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Introduction & Context



Privacy-preserving Machine Learning

I Machine learning models known to memorize unique properties of individual data
points

I This can be exploited by several types of privacy attacks such as

• reconstruction attacks

• model inversion attacks

• membership inference attacks
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Membership Inference Attacks

I Goal: whether or not a sample was used in the training

• Example: Was Alice’s data used to train a model for detecting cancer?

I Requires only black-box access to the machine learning model

• Example: shadow models 1

I Differential privacy 2 by definition neutralizes the attack

I Information theoretic view of membership privacy?

1Reza Shokri et al. “Membership inference attacks against machine learning models”. In: 2017 IEEE
Symposium on Security and Privacy (SP). IEEE. 2017, pp. 3–18

2Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential privacy”. In:
Foundations and Trends® in Theoretical Computer Science 9.3–4 (2014), pp. 211–407
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Maximal Leakage



Maximal Leakage: Setup

I Assume X is a private random variable and Y is the public output of a channel with
input X

How much information does Y leak about X?

I Consider a threat model where the adversary
• observes Y
• is interested in guessing some discrete function of X, called U

Figure 1: Threat model
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Maximal Leakage: Definition

Definition: Maximal Leakage3

The maximal leakage from X to Y is defined as

L(X → Y ) = sup
U :U –X –Y

log
P
(
U = Û(Y )

)
maxu∈U PU (u)

,

where Û is the optimal (MAP) estimator of U .

Maximal leakage

I captures the multiplicative increase in the probability of correctly guessing U , upon
observing Y

I is an operationally meaningful measure of privacy

3Ibrahim Issa, Aaron B Wagner, and Sudeep Kamath. “An operational approach to information
leakage”. In: IEEE Transactions on Information Theory (2019)
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Maximal Leakage: Properties

I For finite alphabets, maximal leakage takes the simple form

L(X → Y ) = log
∑
y∈Y

max
x∈X :PX(x)>0

PY |X(y | x).

I Two important properties:

• Composition: if the Markov chain Y1 −X − Y2 holds

L(X → (Y1, Y2)) ≤ L(X → Y1) + L(X → Y2).

• Data-processing inequality: if the Markov chain X − Y1 − Y2 holds

L(X → Y2) ≤ min{L(X → Y1),L(Y1 → Y2)}.
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Entrywise Information Leakage



Entrywise Information Leakage

I Maximal leakage quantifies the information leaking about the whole dataset

I We want to measure the information leakage about individual data entries

­
What if we assume the adversary knows all the entries except for a single data entry?

I In this setup, observations leak information only about the unknown entry

I But how do we model the adversary’s side information?
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Pointwise Conditional Maximal Leakage: Definition

Definition: Pointwise Conditional Maximal Leakage4

Suppose the value of the random variable Z is a priori given as z ∈ Z. The pointwise
conditional maximal leakage from X to Y given Z = z is defined as

L(X → Y |Z = z) := sup
U :U−(X,Z)−Y

log
P
(
U = Û(Y,Z = z)

)
P
(
U = Ũ(Z = z)

) ,

where both Û and Ũ are optimal estimators of U .

I For finite alphabets, pointwise conditional maximal leakage takes the simple form

L(X → Y |Z = z) = log
∑
y∈Y

max
x:PX|Z(x|z)>0

PY |XZ(y|x, z).

4Cf. Issa, Wagner, and Kamath, “An operational approach to information leakage”, Def. 6
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Pointwise Conditional Maximal Leakage: Properties

Same useful properties as maximal leakage:

I Composition: if the Markov chain Y1 − (X,Z)− Y2 holds

L(X → (Y1, Y2) | Z = z) ≤ L(X → Y1 | Z = z) + L(X → Y2 | Z = z).

I Data-processing inequality: if the Markov chain (X,Z)− Y1 − Y2 holds

L(X → Y2 | Z = z) ≤ min{L(X → Y1 | Z = z),L(Y1 → Y2 | Z = z)}.
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Privacy Case Study: PATE



Private Aggregation of Teacher Ensembles (PATE)

I PATE 5,6 is a framework for privacy-preserving classification of sensitive data

I Three main components:
• ensemble of teacher models

• aggregation mechanism

• student model

5Nicolas Papernot et al. “Semi-supervised knowledge transfer for deep learning from private training
data”. In: arXiv preprint arXiv:1610.05755 (2016)

6Nicolas Papernot et al. “Scalable private learning with pate”. In: arXiv preprint arXiv:1802.08908
(2018)
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PATE: System Model

Teacher 1

Teacher 

...
Student

+

PublicPrivate Aggregation
Mechanism

..

.

Figure 2: PATE System Model
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PATE: Teacher Models

I Training data is divided into disjoint partitions

I Each teacher is a classification model trained on one of the partitions

I Teachers predict labels independently of each other
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PATE: Aggregation Mechanism

I Adds noise to the histogram of teachers’ votes and returns the class with the largest
(noisy) value

I Example:
• L = 4 teachers and m = 3 classes

• f1(x′i) = 0, f2(x′i) = 2, f3(x′i) = 2, and f4(x′i) = 0.

Class 0 Class 1 Class 2

Noise

Votes

1

2

Noisy Votes

Figure 3: Example illustrating the aggregation mechanism
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PATE: Student Model

I A classification model trained using a public unlabeled dataset that is labeled by the
teachers’ ensemble through the aggregation mechanism

I Must be trained with as few queries as possible
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PATE: Advantages

I No need to centrally store sensitive data

I Privacy guarantees independent of the machine learning techniques used to train the
teachers/student

I Privacy-accuracy synergy: increased agreement among teachers in labeling a query
lowers its privacy cost
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Privacy Analysis of PATE



Some Notation

Notation Meaning

D training data

D∗ unknown data entry

D− = D \D∗ known data entries

(x′1, . . . , x
′
k) student’s unlabeled dataset

(Y ′1 , . . . , Y
′
k) predicted labels

V (x′i) =
(
V1(x

′
i), . . . , Vm(x′i)

)
histogram of votes for x′i

V −(x′i) =
(
V −1 (x′i), . . . , V

−
m (x′i)

)
histogram of known votes for x′i

N = (N1, . . . , Nm) sequence of noise

Table 1: Notation
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Overview of Approach (1/2)

I Assume the adversary knows D− = d− and wants to guess D∗

I Evaluate

L(D∗ → (Y ′1 , . . . , Y
′
k) | D− = d−) = L(D → (Y ′1 , . . . , Y

′
k) | D− = d−)

I Use the composition lemma for pointwise conditional maximal leakage

L(D → (Y ′1 , . . . , Y
′
k) | D− = d−) ≤

k∑
i=1

L(D → Y ′i | D− = d−)

17 / 26



Overview of Approach (2/2)

I Use the data-processing inequality for pointwise conditional maximal leakage

L(D → Y ′i | D− = d−) ≤
min{L(D → V (x′i) | D− = d−)︸ ︷︷ ︸

leakage of training

,L(V (x′i)→ Y ′i | D− = d−)︸ ︷︷ ︸
leakage of aggregation

}.

I Evaluate leakage of aggregation (leakage of training is difficult to analyze and is
usually very large)

L(V (x′i)→ Y ′i | D− = d−) = L(V (x′i)→ Y ′i | V −(x′i) = v−)
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Some Definitions: Majorization

Definition: Majorization7

Consider p, q ∈ Rn with non-increasingly ordered elements, i.e., p1 ≥ p2 ≥ . . . ≥ pn
and q1 ≥ q2 ≥ . . . ≥ qn. We say that p majorizes q, and write p � q if

m∑
i=1

pi ≥
m∑
i=1

qi, for m = 1, . . . , n− 1 and
n∑
i=1

pi =

n∑
i=1

qi.

Examples: define Q = {(q1, q2, q3) ∈ R3 :
∑3

i=1 qi = 9}
I (5, 3, 1) � (4, 4, 1)

I (4, 4, 1) and (5, 2, 2) cannot be compared using majorization

I (3, 3, 3) is majorized by all q ∈ Q
I (9, 0, 0), (0, 9, 0) and (0, 0, 9) majorize all q ∈ Q
7Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization and its

applications. Vol. 143. Springer, 1979
19 / 26



Some Definitions: Schur-concave Function

Definition: Schur-concave Function

Consider a real-valued function Φ defined on In ⊂ Rn. Φ is said to be Schur-concave
on In if p � q on In implies Φ(p) ≤ Φ(q).
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Some Definitions: Log-concave Function

Definition: Log-concave Function

A non-negative function f : Rn → R+ is said to be log-concave if it can be written
as f(x) = expφ(x) for some concave function φ : Rn → [−∞,∞).

Examples:

I Gaussian probability density f(x) = 1
σ
√
2π

exp
(
−1

2

(x−µ
σ

)2)
I Laplace probability density f(x) = 1

2b exp
(
− |x−µ|b

)
I ...
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Results: Schur-concavity of the Entrywise Leakage

Theorem 1

Consider the aggregation mechanism in PATE where the noise has a log-concave
probability density. Then, L(V (x′i)→ Y ′i | V −(x′i) = v−) is Schur-concave in v−.

This implies that

I leakage is maximized when

v− = v−max =

(
L− 1

m
, . . . ,

L− 1

m

)
,

I leakage is minimized when

v− = v−min = (0, . . . , 0, L− 1, 0, . . . , 0).

I stronger agreement among teachers lowers the privacy cost of a query
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Results: Bounds using Laplace Noise (1/3)

Proposition 1

Consider the PATE framework with Laplace distributed noise. Then,

L(V (x′i)→ Y ′i | V −(x′i) = v−) ≤ 1−m
m

2−me−γ +
1

m

[
1− (1− 1

2
e−γ)

m
]
eγ

+
1

2
(1− 1

2
e−γ)

m−1
− m− 1

4
e−γH(m− 2),

where

H(m) := γ +

m∑
k=1

2−k − (1− 1
2e
−γ)

k

k
for m ≥ 1 and H(0) := γ,

and equality holds for v− = v−max.
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Results: Bounds using Laplace Noise (2/3)
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Figure 4: Upper bound on the entrywise leakage for different m and γ
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Results: Bounds using Laplace Noise (3/3)

I Can we simplify the bound in Proposition 1?

Theorem 2

Consider the PATE framework with Laplace distributed noise. Then,

L(D∗ → Y ′i | D− = d−) = L(D → Y ′i | D− = d−) ≤ γ.
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Summary

I We showed that the entrywise leakage of the aggregation mechanism in PATE is
Schur-concave when the noise has log-concave pdf

I We derived bounds on the leakage with Laplace noise

26 / 26


