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Introduction & Context



Privacy-preserving Machine Learning

» Machine learning models known to memorize unique properties of individual data
points

» This can be exploited by several types of privacy attacks such as
e reconstruction attacks
e model inversion attacks

* membership inference attacks
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Membership Inference Attacks

>

Goal: whether or not a sample was used in the training

e Example: Was Alice's data used to train a model for detecting cancer?

v

Requires only black-box access to the machine learning model

» Example: shadow models !

v

Differential privacy 2 by definition neutralizes the attack

v

Information theoretic view of membership privacy?

1Reza Shokri et al. “Membership inference attacks against machine learning models”. In: 2017 IEEE
Symposium on Security and Privacy (SP). IEEE. 2017, pp. 3-18
2Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential privacy”. In:
Foundations and Trends(®) in Theoretical Computer Science 9.3-4 (2014), pp. 211-407
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Maximal Leakage



Maximal Leakage: Setup

» Assume X is a private random variable and Y is the public output of a channel with
input X
How much information does Y leak about X7

» Consider a threat model where the adversary

e observes Y
e is interested in guessing some discrete function of X, called U

Private public @

U_xy

B D

Figure 1. Threat model
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Maximal Leakage: Definition

Definition: Maximal Leakage®

The maximal leakage from X to Y is defined as

P (U - U(Y))
LX—=Y)= sup log———F—F%,
v:Uu-x-y  maxyey Py(u)

where U is the optimal (MAP) estimator of U.

Maximal leakage

> captures the multiplicative increase in the probability of correctly guessing U, upon
observing Y

> is an operationally meaningful measure of privacy

3Ibrahim Issa, Aaron B Wagner, and Sudeep Kamath. “An operational approach to information
leakage”. In: IEEE Transactions on Information Theory (2019)
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Maximal Leakage: Properties

» For finite alphabets, maximal leakage takes the simple form
LIX—Y)= logz max  Pyx(y | z).
€y

xeX:Px (x)>0

» Two important properties:

¢ Composition: if the Markov chain Y7 — X — Y5 holds
LIX = (V,Y2) <L(X =Y+ L(X = Y3).
» Data-processing inequality: if the Markov chain X — Y7 — Y5 holds

L(X = Ys) <min{L(X = Y1), L(V1 — Ya)}.
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Entrywise Information Leakage



Entrywise Information Leakage

» Maximal leakage quantifies the information leaking about the whole dataset

» We want to measure the information leakage about individual data entries

%

What if we assume the adversary knows all the entries except for a single data entry?

> In this setup, observations leak information only about the unknown entry

» But how do we model the adversary’s side information?
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Pointwise Conditional Maximal Leakage: Definition

Definition: Pointwise Conditional Maximal Leakage*

Suppose the value of the random variable Z is a priori given as z € Z. The pointwise
conditional maximal leakage from X to Y given Z = z is defined as

P <U —U(Y, 7 = z))
LIX=Y|Z=2)= sup log ~ )
U:U—(X,Z)-Y P (U =U(Z = z))

where both U and U are optimal estimators of U.

» For finite alphabets, pointwise conditional maximal leakage takes the simple form

LIX =Y|Z=2) Ingx . maxl )>0Py|XZ(y|1:, z).
x|z (%

4Cf. lssa, Wagner, and Kamath, “An operational approach to information leakage”, Def. 6
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Pointwise Conditional Maximal Leakage: Properties

Same useful properties as maximal leakage:

» Composition: if the Markov chain Y7 — (X, Z) — Y5 holds
LIX—>WNY2)|Z=2)<LX->VN|Z=2)+LX=>Y|Z=2).

» Data-processing inequality: if the Markov chain (X, Z) — Y7 — Y5 holds
LIX—>Ys|Z=2)<min{l(X —>Y1|Z=2),LY1 =Y | Z=2)}
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Privacy Case Study: PATE



Private Aggregation of Teacher Ensembles (PATE)

» PATE 5 is a framework for privacy-preserving classification of sensitive data

» Three main components:
e ensemble of teacher models

e aggregation mechanism

e student model

®Nicolas Papernot et al. “Semi-supervised knowledge transfer for deep learning from private training
data”. In: arXiv preprint arXiv:1610.05755 (2016)
®Nicolas Papernot et al. “Scalable private learning with pate”. In: arXiv preprint arXiv:1802.08908
(2018)
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PATE: System Model
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Figure 2: PATE System Model
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PATE: Teacher Models

» Training data is divided into disjoint partitions
» Each teacher is a classification model trained on one of the partitions

» Teachers predict labels independently of each other
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PATE: Aggregation Mechanism

» Adds noise to the histogram of teachers’ votes and returns the class with the largest
(noisy) value

» Example:
e . = 4 teachers and m = 3 classes

o fi(x}) =0, fa(zh) =2, f3(x}) =2, and fu(z}) = 0.

Noisy Votes -
Noise

- Votes

Class 0 Class 1 Class 2

Figure 3: Example illustrating the aggregation mechanism
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PATE: Student Model

» A classification model trained using a public unlabeled dataset that is labeled by the
teachers’ ensemble through the aggregation mechanism

» Must be trained with as few queries as possible
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PATE: Advantages

» No need to centrally store sensitive data

» Privacy guarantees independent of the machine learning techniques used to train the
teachers/student

» Privacy-accuracy synergy: increased agreement among teachers in labeling a query
lowers its privacy cost
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Privacy Analysis of PATE



Some Notation

Notation Meaning

D training data

D* unknown data entry

D™ =D\ D* known data entries

(xh,...,z) student’s unlabeled dataset
(Y{,...,Y)) predicted labels

V(zh) = (Vi(z}),..., Vin(2})) histogram of votes for
V() = (Vi (¢}),...,V,y(2}))  histogram of known votes for

N = (Ny,...,Np) sequence of noise

Table 1: Notation
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Overview of Approach (1/2)

» Assume the adversary knows D~ = d~ and wants to guess D*

» Evaluate
LD* = (Y{,....Y) | D" =d")=L(D — (Y{,....Y}) | D~ =d")

» Use the composition lemma for pointwise conditional maximal leakage
k
LD = (Y],....¥)| D" =d" )<Y LD =Y/ | D =d)
i=1
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Overview of Approach (2/2)

» Use the data-processing inequality for pointwise conditional maximal leakage
L(D—Y |D =d)<
min{L(D — V(z}) | D™ =d™),L(V(z}) =Y/ | D~ =d")}.

leakage of training leakage of aggregation

» Evaluate leakage of aggregation (leakage of training is difficult to analyze and is
usually very large)

LV (i) =Y | D™ =d") = L(V(2}) = Y] |V (5) =v7)
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Some Definitions: Majorization

Definition: Majorization’

Consider p,q € R™ with non-increasingly ordered elements, i.e., p1 > p2 > ... > p,
and q1 > q2 > ... > q,. We say that p majorizes ¢, and write p > ¢ if

m m n n
ZPz‘ZZqi, for m=1,...,n—1 and Zpi:ZQi'
i=1 i=1 i=1 i=1

Examples: define Q = {(q1,q2,q3) € R?: 3270 ¢ = 9}

> (5,3,1) = (4,4,1)

» (4,4,1) and (5,2,2) cannot be compared using majorization
» (3,3,3) is majorized by all ¢ € Q

» (9,0,0), (0,9,0) and (0,0,9) majorize all ¢ € Q

"Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization and its
applications. \ol. 143. Springer, 1979
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Some Definitions: Schur-concave Function

Definition: Schur-concave Function

Consider a real-valued function ® defined on Z" C R". ® is said to be Schur-concave
on Z™ if p > q on Z" implies ®(p) < ®(q).
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Some Definitions: Log-concave Function

Definition: Log-concave Function

A non-negative function f : R" — R, is said to be log-concave if it can be written
as f(x) = exp ¢(z) for some concave function ¢ : R” — [—00, 00).

Examples:

>

>

Gaussian probability density f(z) = m}ﬂ exp (—% (%)2)

Laplace probability density  f(z) = 5; exp (—'x;“‘>

> ...
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Results: Schur-concavity of the Entrywise Leakage

Theorem 1

Consider the aggregation mechanism in PATE where the noise has a log-concave
probability density. Then, £L(V (z}) — Y/ | V™ (z}) = v™) is Schur-concave in v™.

This implies that

> leakage is maximized when

v =v_.=(0,...,0,L—1,0,...,0).
> stronger agreement among teachers lowers the privacy cost of a query
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Results: Bounds using Laplace Noise (1/3)

Proposition 1

Consider the PATE framework with Laplace distributed noise. Then,

1—m 1 1 m
LV(x) =Y/ |V (2)=0v")< 27MeT T4 — |1 - (1—=e 7 U
V) ¥ V)=o) < e s Ll e ge)
1 1 m -1
+§(1—§67’Y) _m4 e TH(m —2),
where
m o9k (1— Len)
H(m) ::'y—i-z (k 2° for m>1 and H(0) :=~,
k=1
and equality holds for v= =wv, ...
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Results: Bounds using Laplace Noise (2/3)
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Figure 4: Upper bound on the entrywise leakage for different m and ~y
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Results: Bounds using Laplace Noise (3/3)

» Can we simplify the bound in Proposition 17

Theorem 2

Consider the PATE framework with Laplace distributed noise. Then,
LD* =Y |D =d )=LD—-Y/| D =d)<n.
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Summary

» We showed that the entrywise leakage of the aggregation mechanism in PATE is
Schur-concave when the noise has log-concave pdf

» We derived bounds on the leakage with Laplace noise
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